Forscher von Intel und der University of California, Santa Barbara (UCSB) haben den ersten elektrisch betriebenen hybriden Silizium-Laser der Welt hergestellt. Sie griffen dabei auf Standard-Prozesse zur Silizium-Herstellung zurück. Dadurch ergeben sich Vorteile bei der Produktion kostengünstiger Photonik-Geräte aus Silizium, die in Computern und Rechenzentren künftig zum Einsatz kommen und über eine hohe Bandbreite verfügen.
Die Forscher konnten die lichtemittierenden Eigenschaften von Indium-Phosphid mit den lichtleitenden Eigenschaften von Silizium in einem einzelnen hybriden Chip vereinen. Unter Spannung dringt das im Indium-Phosphid generierte Licht in den Silizium-Hohlleiter ein; so entsteht ein kontinuierlicher Laser-Strahl, mit dessen Hilfe andere photonische Silizium-Geräte angesteuert werden können. Durch den Einsatz von Silizium-Produktionstechniken für die Massenherstellung können die Kosten deutlich reduziert werden. So könnten Silizium-basierte Laser zur größeren Verbreitung der Photonik in Computern führen.
Heutzutage wird Silizium meist zur Herstellung günstiger Digitalelektronik eingesetzt. Doch es vermag noch mehr: Silizium kann auch verwendet werden, um Licht zu leiten, aufzuspüren, zu modulieren oder gar zu verstärken. Es kann Licht jedoch nicht effektiv generieren. Im Vergleich dazu sind auf Indium-Phosphid basierende Laser heute in Telekommunikations-Equipment üblich. Da sie jedoch individuell zusammengebaut und angepasst werden müssen, sind sie für die Verwendung in der PC-Branche zu teuer; denn diese ist bei der Herstellung auf hohe Stückzahlen und zugleich niedrige Kosten angewiesen.
Der hybride Silizium-Laser verfügt über ein neuartiges Design, das auf Indium-Phosphid basierende Materialien zur Lichterzeugung und -verstärkung verwendet und gleichzeitig den Silizium-Hohlleiter zur Aufnahme und Kontrolle des Lasers einsetzt. Der Schlüssel zur erfolgreichen Herstellung liegt in der Verwendung von Sauerstoffplasma (einem elektrisch geladenen Sauerstoffgas) mit niedrigen Temperaturen. Dieses erzeugt eine nur knapp 25 Atome dicke Oxidschicht auf der Oberfläche beider Metalle. Wenn diese Sauerstoffschicht erhitzt und zusammengedrückt wird, wirkt sie als eine Art ‚Glas-Klebstoff’ (glass-glue). Dieser lässt die beiden Materialien in einen einzelnen Chip verschmelzen. Sobald elektrische Spannung angelegt wird, geschieht folgendes: Das Licht, das in dem Material auf Basis von Indium-Phosphid generiert wurde, durchdringt die Sauerstoff Glas-Klebstoff Schicht und gelangt in den Lichtkanal des Silizium-Chips. Hier wird das Licht verstärkt und es entsteht unter Ausnutzung des Raman-Effektes ein Laserstrahl. Das Design des Lichtkanals ist ausschlaggebend, um Leistungsfähigkeit und spezifische Wellenlänge des hybriden Silizium-Lasers zu bestimmen.
Crucial bringt den neuen Crucial DDR5 Pro Overclocking (OC) 6400 CL32 Gaming DRAM, der in 32 GB-Kits oder 16 GB-Einzelmodulen...
Gaming hat sich in den letzten Jahren enorm weiterentwickelt – von einfachen Spielen bis hin zu komplexen Online-Welten mit präzisen...
Mit dem SanDisk Professional G-DRIVE 26 TB bietet Western Digital eine externe Speicherlösung für professionelle Anwendungen, bei denen große Datenmengen verarbeitet,...
Toshiba Electronics Europe gibt bekannt, dass die Toshiba Electronic Devices & Storage Corporation als erstes Unternehmen in der Storage-Branche erfolgreich...
Die digitale Spielewelt bewegt sich rasant. Während auf der einen Seite komplexe Grafikkracher mit gigantischen Spielwelten dominieren, zeichnet sich auf...
Mit der iCHILL Frostbite bietet INNO3D eine GeForce RTX 5090 Grafikkarte mit Wasserkühlblock von Alphacool an. Wir hatten die Gelegenheit diesen extravaganten Boliden im Testlab auf Herz und Nieren zu prüfen.
Mit dem SanDisk Professional G-DRIVE bietet Western Digital eine externe HDD für Profis an. Der mobile Speicher bietet bis zu 26 TB Platz für Inhalte und ist mit einem USB-C-Interface ausgestattet.